Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38497220

ABSTRACT

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Subject(s)
Andersen Syndrome , Humans , Mice , Animals , Andersen Syndrome/genetics , Andersen Syndrome/metabolism , Mutation , Myocytes, Cardiac/metabolism , Cardiac Conduction System Disease , Disulfides , Phosphatidylinositols/metabolism
2.
Cardiovasc Res ; 120(5): 490-505, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38261726

ABSTRACT

AIMS: Short QT syndrome type 3 (SQTS3) is a rare arrhythmogenic disease caused by gain-of-function mutations in KCNJ2, the gene coding the inward rectifier potassium channel Kir2.1. We used a multidisciplinary approach and investigated arrhythmogenic mechanisms in an in-vivo model of de-novo mutation Kir2.1E299V identified in a patient presenting an extremely abbreviated QT interval and paroxysmal atrial fibrillation. METHODS AND RESULTS: We used intravenous adeno-associated virus-mediated gene transfer to generate mouse models, and confirmed cardiac-specific expression of Kir2.1WT or Kir2.1E299V. On ECG, the Kir2.1E299V mouse recapitulated the QT interval shortening and the atrial-specific arrhythmia of the patient. The PR interval was also significantly shorter in Kir2.1E299V mice. Patch-clamping showed extremely abbreviated action potentials in both atrial and ventricular Kir2.1E299V cardiomyocytes due to a lack of inward-going rectification and increased IK1 at voltages positive to -80 mV. Relative to Kir2.1WT, atrial Kir2.1E299V cardiomyocytes had a significantly reduced slope conductance at voltages negative to -80 mV. After confirming a higher proportion of heterotetrameric Kir2.x channels containing Kir2.2 subunits in the atria, in-silico 3D simulations predicted an atrial-specific impairment of polyamine block and reduced pore diameter in the Kir2.1E299V-Kir2.2WT channel. In ventricular cardiomyocytes, the mutation increased excitability by shifting INa activation and inactivation in the hyperpolarizing direction, which protected the ventricle against arrhythmia. Moreover, Purkinje myocytes from Kir2.1E299V mice manifested substantially higher INa density than Kir2.1WT, explaining the abbreviation in the PR interval. CONCLUSION: The first in-vivo mouse model of cardiac-specific SQTS3 recapitulates the electrophysiological phenotype of a patient with the Kir2.1E299V mutation. Kir2.1E299V eliminates rectification in both cardiac chambers but protects against ventricular arrhythmias by increasing excitability in both Purkinje-fiber network and ventricles. Consequently, the predominant arrhythmias are supraventricular likely due to the lack of inward rectification and atrial-specific reduced pore diameter of the Kir2.1E299V-Kir2.2WT heterotetramer.


Subject(s)
Atrial Fibrillation , Disease Models, Animal , Myocytes, Cardiac , Potassium Channels, Inwardly Rectifying , Animals , Humans , Mice , Action Potentials , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Genetic Predisposition to Disease , Heart Rate/genetics , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
3.
Free Radic Biol Med ; 205: 244-261, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37295539

ABSTRACT

Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Mice , Animals , Superoxides/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Mitochondria/metabolism , Oxidative Stress , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Coronary Artery Disease/metabolism , Energy Metabolism , Ischemia/metabolism , Reperfusion , Fatty Acids/metabolism , Infarction/complications , Infarction/metabolism
4.
Cardiovasc Res ; 119(4): 919-932, 2023 05 02.
Article in English | MEDLINE | ID: mdl-35892314

ABSTRACT

Andersen-Tawil syndrome (ATS) is a rare inheritable disease associated with loss-of-function mutations in KCNJ2, the gene coding the strong inward rectifier potassium channel Kir2.1, which forms an essential membrane protein controlling cardiac excitability. ATS is usually marked by a triad of periodic paralysis, life-threatening cardiac arrhythmias and dysmorphic features, but its expression is variable and not all patients with a phenotype linked to ATS have a known genetic alteration. The mechanisms underlying this arrhythmogenic syndrome are poorly understood. Knowing such mechanisms would be essential to distinguish ATS from other channelopathies with overlapping phenotypes and to develop individualized therapies. For example, the recently suggested role of Kir2.1 as a countercurrent to sarcoplasmic calcium reuptake might explain the arrhythmogenic mechanisms of ATS and its overlap with catecholaminergic polymorphic ventricular tachycardia. Here we summarize current knowledge on the mechanisms of arrhythmias leading to sudden cardiac death in ATS. We first provide an overview of the syndrome and its pathophysiology, from the patient's bedside to the protein and discuss the role of essential regulators and interactors that could play a role in cases of ATS. The review highlights novel ideas related to some post-translational channel interactions with partner proteins that might help define the molecular bases of the arrhythmia phenotype. We then propose a new all-embracing classification of the currently known ATS loss-of-function mutations according to their position in the Kir2.1 channel structure and their functional implications. We also discuss specific ATS pathogenic variants, their clinical manifestations, and treatment stratification. The goal is to provide a deeper mechanistic understanding of the syndrome toward the development of novel targets and personalized treatment strategies.


Subject(s)
Andersen Syndrome , Tachycardia, Ventricular , Humans , Andersen Syndrome/diagnosis , Andersen Syndrome/genetics , Andersen Syndrome/therapy , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics , Mutation , Phenotype , Death, Sudden, Cardiac/etiology
5.
Front Psychol ; 11: 563925, 2020.
Article in English | MEDLINE | ID: mdl-33424677

ABSTRACT

Parent and preschool teacher ratings of the 10 noun categories of MacArthur-Bates Communication Development Inventory (CDI) were used to study expressive language in 2-4-year-old children with autism spectrum disorder (ASD) (N = 58) across the home and preschool context. There was no significant difference in the total number of words the children said in the two contexts, but the children said significantly more words in the noun categories "Furniture and rooms" and "People" at home. Only one third of the words the children said were said both at home and in the preschool, while the other two thirds were said only at home or only in preschool. This suggests that what words the children use across contexts differ substantially and that their vocabulary is larger than it seems when measured only in one context. This novel study highlights the importance of assessing the language in children with ASD in multiple contexts in order to better measure their vocabulary and to design appropriate language interventions.

6.
Redox Biol ; 6: 183-197, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26233704

ABSTRACT

Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases.


Subject(s)
Cardiovascular Diseases/metabolism , Endoplasmic Reticulum Stress/genetics , Intracellular Signaling Peptides and Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/metabolism , Adaptation, Physiological , Animals , Antioxidants/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Gene Expression Regulation , Glutathione/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Signal Transduction , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
7.
Free Radic Biol Med ; 88(Pt B): 427-438, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25843654

ABSTRACT

4-Hydroxy-2-nonenal (HNE) is a highly cytotoxic product of lipid peroxidation. Nevertheless, at low concentrations, it is able to mediate cell signaling and to activate protective pathways, including that of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In addition, HNE activates uncoupling proteins (UCPs), mitochondrial inner membrane proteins that mediate uncoupling of oxidative phosphorylation and have been proposed to protect against oxidative stress. It is not known, however, whether HNE might induce UCP expression via Nrf2 to cause mitochondrial uncoupling. We investigated the effects of HNE on UCP3 expression in mouse cardiomyocytes and the involvement of Nrf2. HNE induced the nuclear accumulation of Nrf2 and enhanced UCP3 expression, effects prevented by the antioxidant N-acetylcysteine. ChIP assays indicated that Nrf2 bound to the Ucp3 promoter after HNE treatment, increasing its expression. Cardiomyocytes treated with Nrf2- or UCP3-specific siRNA were less tolerant to HNE as reflected by increased cell death, and Nrf2 siRNA prevented HNE-induced UCP3 upregulation. The treatment with HNE greatly altered cardiomyocyte bioenergetics, increasing the proton leak across the inner mitochondrial membrane and severely decreasing the maximal respiratory capacity and the respiratory reserve capacity. These findings confirm that low HNE doses activate Nrf2 in cardiomyocytes and provide the first evidence of Nrf2 binding to the Ucp3 promoter in response to HNE, leading to increased protein expression. These results suggest that the upregulation of UCP3 mediated by Nrf2 in response to HNE might be important in the protection of the heart under conditions of oxidative stress such as ischemia-reperfusion.


Subject(s)
Aldehydes/metabolism , Ion Channels/biosynthesis , Mitochondrial Proteins/biosynthesis , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Aldehydes/pharmacology , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Energy Metabolism/physiology , Flow Cytometry , Immunoblotting , Mice , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Transfection , Uncoupling Protein 3 , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...